493 research outputs found

    The placenta: a multifaceted, transient organ.

    Get PDF
    The placenta is arguably the most important organ of the body, but paradoxically the most poorly understood. During its transient existence, it performs actions that are later taken on by diverse separate organs, including the lungs, liver, gut, kidneys and endocrine glands. Its principal function is to supply the fetus, and in particular, the fetal brain, with oxygen and nutrients. The placenta is structurally adapted to achieve this, possessing a large surface area for exchange and a thin interhaemal membrane separating the maternal and fetal circulations. In addition, it adopts other strategies that are key to facilitating transfer, including remodelling of the maternal uterine arteries that supply the placenta to ensure optimal perfusion. Furthermore, placental hormones have profound effects on maternal metabolism, initially building up her energy reserves and then releasing these to support fetal growth in later pregnancy and lactation post-natally. Bipedalism has posed unique haemodynamic challenges to the placental circulation, as pressure applied to the vena cava by the pregnant uterus may compromise venous return to the heart. These challenges, along with the immune interactions involved in maternal arterial remodelling, may explain complications of pregnancy that are almost unique to the human, including pre-eclampsia. Such complications may represent a trade-off against the provision for a large fetal brain.This is the accepted manuscript. It's currently embargoed until 19/01/2016. the final version is available from Royal Society Publishing at http://rstb.royalsocietypublishing.org/content/370/1663/2014006

    Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Get PDF
    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered

    Visualizing electrostatic gating effects in two-dimensional heterostructures

    Get PDF
    The ability to directly observe electronic band structure in modern nanoscale field-effect devices could transform understanding of their physics and function. One could, for example, visualize local changes in the electrical and chemical potentials as a gate voltage is applied. One could also study intriguing physical phenomena such as electrically induced topological transitions and many-body spectral reconstructions. Here we show that submicron angle-resolved photoemission (micro-ARPES) applied to two-dimensional (2D) van der Waals heterostructures affords this ability. In graphene devices, we observe a shift of the chemical potential by 0.6 eV across the Dirac point as a gate voltage is applied. In several 2D semiconductors we see the conduction band edge appear as electrons accumulate, establishing its energy and momentum, and observe significant band-gap renormalization at low densities. We also show that micro-ARPES and optical spectroscopy can be applied to a single device, allowing rigorous study of the relationship between gate-controlled electronic and excitonic properties.Comment: Original manuscript with 9 pages with 4 figures in main text, 5 pages with 4 figures in supplement. Substantially edited manuscript accepted at Natur

    Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice

    Get PDF
    A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women

    Ghost anti-crossings caused by interlayer umklapp hybridization of bands in 2D heterostructures

    Get PDF
    In two-dimensional heterostructures, crystalline atomic layers with differing lattice parameters can stack directly one on another. The resultant close proximity of atomic lattices with differing periodicity can lead to new phenomena. For umklapp processes, this opens the possibility for interlayer umklapp scattering, where interactions are mediated by the transfer of momenta to or from the lattice in the neighbouring layer. Using angle-resolved photoemission spectroscopy to study a graphene on InSe heterostructure, we present evidence that interlayer umklapp processes can cause hybridization between bands from neighbouring layers in regions of the Brillouin zone where bands from only one layer are expected, despite no evidence for Moiré-induced replica bands. This phenomenon manifests itself as ‘ghost’ anti-crossings in the InSe electronic dispersion. Applied to a range of suitable two-dimensional material pairs, this phenomenon of interlayer umklapp hybridization can be used to create strong mixing of their electronic states, giving a new tool for twist-controlled band structure engineering
    corecore